def msort[A](less: (A, A) => Boolean)(xs: List[A]): List[A] = {
def merge(xs1: List[A], xs2: List[A]): List[A] =
if (xs1.isEmpty) xs2
else if (xs2.isEmpty) xs1
else if (less(xs1.head, xs2.head)) xs1.head :: merge(xs1.tail, xs2)
else xs2.head :: merge(xs1, xs2.tail)
val n = xs.length/2
if (n == 0) xs
else merge(msort(less)(xs take n), msort(less)(xs drop n))
}
Further the authors say that the complexity of this algorithm is O(N log (N)), which makes it an attractive option for sorting lists.
Being in an inquisitive mood, I couldn't help wondering how big can in practice be a list sorted with such algorithm. (My current machine is 64-bit Ubuntu with 6 GB RAM and 8 cores)
So here we go.
scala> import scala.util.Random
scala> val randomNums = Seq.fill(1000)(Random.nextInt)
scala> msort((x:Int,y:Int)=>x<y)(randomNums.toList)
res27: List[Int] = List(-2145589793, -2143814602, -2143330861, -2142630038, -2136184047, -2135476301, -2132371275, -2129131922, -2123018872, -2120069375, -2118819114, -2117572993, -2112618055, -2102489605, -2096417279, -2095978655, -2095806565, -2087860343, -2087105558, -2085005596, -2083360810, -2077234330, -2065393243, -2058765966, -2056823240, -2053145149, -2047696716, -2044737011, -1847777706, -18259...
OK, for 1000 elements it works, for 10000 it works too. But let's push one more order of magnitude...
scala> val randomNums = Seq.fill(100000)(Random.nextInt).toList
randomNums: List[Int] = List(186865346, 638415825, -637620864, 220723809, -1536234831, 1710286185, 126091472, -1621728642, -1819749330, -294195052, -613979926, 1278841478, -111715804, -1953497441, 1891679544, 582175290, 1555531003, -430520072, 652471392, 1211722008, -112446234, -1900260621, 2058382521, 564201400, -1225275015, 2069052362, 797097978, 1077363576, 1469066877, -303059738, -166855116, -1876385701, 285630983, -1956550564, -1991336959, -1713232594, -868759609, -723403847, -282664963, 1965397484, 1563483549, -618177790, -297223307, -197365661, -703715983, 28207094, -1793590690, 374050582, 992041027, -1931269739, -932512120, -1551657371, 1523463808, -742246427, -1665172973, 50892779, -286029416, -1654054925, -874783455, -1825744857, -571856180, 289326103, -215127347, -1488600483,...
scala> msort((x:Int,y:Int)=>x<y)(randomNums)
java.lang.StackOverflowError
at .merge$1(<console>:20)
at .merge$1(<console>:22)
at .merge$1(<console>:20)
at .merge$1(<console>:20)
at .merge$1(<console>:20)
at .merge$1(<console>:20)
at .merge$1(<console>:22)
...
Oi wei, we ran out of stack!
The reasons are obvious: this line of code
xs2.head :: merge(xs1, xs2.tail)
means that all the time while you are busy merging the partial lists, there are orphan elements hanging around, waiting until they are allowed to be the head. And the stack isn't made of rubber!
Well... there is some sport, of course, could we make it at least work? Using the tail recursion, perhaps? (If you have forgotten, tail recursion happens when the recursive function ends with calling itself. Then the compiler can be smart enough to make a cycle instead of the sequence of the recursive calls, at least if you ask it politely :) )
import scala.annotation.tailrec
...
@tailrec
def merge(xs1: List[A], xs2: List[A]): List[A] =
if (xs1.isEmpty) xs2
else if (xs2.isEmpty) xs1
else if (less(xs1.head, xs2.head)) xs1.head :: merge(xs1.tail, xs2)
else xs2.head :: merge(xs1, xs2.tail)
However, this won't compile, and rightly so:
[error]
<filename>: could not optimize @tailrec annotated method merge: it contains a recursive call not in tail position
[error] else xs2.head :: merge(xs1, xs2.tail)
Well, without further ado, that is the variant I have ended up with. It worked in the sense that it didn't break - there was now a cycle - but for the list with 100000 elements it took about 5 minutes to do the sorting!
import scala.math.Ordering.Implicits._
import scala.util.Random
import scala.annotation.tailrec
object Sorting {
import scala.util.Random
import scala.annotation.tailrec
object Sorting {
def less[T:Ordering](x:T,y:T) = x<y
@tailrec
def merge[A:Ordering ](xs0: List[A], xs1: List[A], xs2: List[A]): List[A] =
if (xs1.isEmpty) if (xs0 == Nil) xs2 else xs0 ::: xs2
else if (xs2.isEmpty) if (xs0 == Nil) xs1 else xs0 ::: xs1
else if (less(xs1.head, xs2.head)) merge(xs0 :+ xs1.head, xs1.tail, xs2)
else merge(xs0 :+ xs2.head, xs1, xs2.tail)
def msort[A:Ordering](xs: List[A]): List[A] = {
val n = xs.length/2
if (n == 0) xs
else merge(List[A](), msort(xs take n), msort(xs drop n))
}
def checkSorted[A:Ordering](x:A, xs:List[A]):Boolean = xs match {
case Nil => true
case head::tail => if (head < x) false else checkSorted(head, tail)
}
def test(size:Int, printAll:Boolean = true) = {
val randomNums = Seq.fill(size)(Random.nextInt).toList
val sorted = msort(randomNums)
if (printAll) println(sorted)
if (!checkSorted(sorted.head, sorted.tail)) println("Not sorted!!!")
}
}
The reason why this code is slow is in the fact that now we have added the accumulator, and we want to add elements to the end of it. However, List (as also mentioned here) only guarantees the quick access to the head - the complexity of accessing the last element would be proportional to the size of the list!
So is there anything to do to make it faster, without trying hard to imagine some other algorithm? My solution was to use Vectors instead of Lists.
object Sorting {
def less[T:Ordering](x:T,y:T) = x<y
@tailrec
def merge[A:Ordering ](xs0: Vector[A], xs1: Vector[A], xs2: Vector[A]): Vector[A] =
if (xs1.isEmpty) if (xs0 == Nil) xs2 else xs0 ++ xs2
else if (xs2.isEmpty) if (xs0 == Nil) xs1 else xs0 ++ xs1
else if (less(xs1.head, xs2.head)) merge(xs0 :+ xs1.head, xs1.tail, xs2)
else merge(xs0 :+ xs2.head, xs1, xs2.tail)
def msort[A:Ordering](xs: Vector[A]): Vector[A] = {
val n = xs.length/2
if (n == 0) xs
else merge(Vector[A](), msort(xs take n), msort(xs drop n))
}
def checkSorted[A:Ordering](x:A, xs:List[A]):Boolean = xs match {
case Nil => true
case head::tail => if (head < x) false else checkSorted(head, tail)
}
def test(size:Int, printAll:Boolean = true) = {
val randomNums = Seq.fill(size)(Random.nextInt).toVector
val sortedVec = msort(randomNums)
if (printAll) println(sortedVec)
val sorted = sortedVec.toList
if (!checkSorted(sorted.head, sorted.tail)) println("Not sorted!!!")
}
}
Vectors guarantee constant access to any element they contain. It is probably slightly slower than accessing the head of the list, but for the tasks like this one it seems to be a definitely better option. It took very little time to sort both 100000 and 1000000 vectors of random integers. With 10000000, however, it still takes quite some time and apparently more memory, but 10 millions is already more than the amount of rows in many decent tables :-)
I hope it was useful, or at least that you did rid to the end. I still want to write a C++ implementation and see which one finishes first. So may be there will be the part two...
No comments:
Post a Comment